Emission Control Strategies for PM and NOx or What is the prognosis for HDD

what is the prognosis for HDD 0.2 g/bhp-hr NOx and 0.01 g/bhp-hr PM?

Tim Johnson

Corning Incorporated

February 18, 2000

Page 1

CORNING

The outlook is good, but not without issue

- PM
 - Filters are very efficient (99.9% on particles, 80%+ by mass)
 - low sulfur fuel will be needed (<20 ppm)
- · NOx is more difficult
 - 80+% efficiency emission control plus EGR will hit
 - SCR will happen in Europe and can hit 80+%
 - NOx traps are emerging
 - · very low sulfur may be needed
- Integrated systems are SO CLOSE

Give us a market, and "THEY WILL COME"

Page 2

Agenda

- Emerging US and European Regulations
- Overview of PM Technologies
- Overview of NOx Control Technologies
- Pulling it all Together

corning

Emerging Regulations

Engine Modeling at the Univ. of Wisconsin Results in a "Virtual Engine"

Parameters of Interest and Ranges of Variation

Boost Pressure (kPa)	165 ⇔ 284
•EGR (%)	0 ⇒ 50
•SOI (CA deg. atdc)	-10 ⇒ +10
•Injection Pressure (MPa)	100 ⇔ 200
•Mass in First Pulse (%)	10 ⇒ 90
•Dwell (CA deg.)	5 ⇒ 15

Physical Constraints on the Engine

- •Maximum Exhaust Temperature of 1023 K
- •Maximum Peak Pressure of ~ 15 MPa

Rolf Reitz, Univ. Wisconsin, 9/99

Although there's much gap between the virtual and the real engines, the potential for improvement can not be denied.

- HDD fuel injection technology is still gaining
- Fuel benefits have yet to be realized
- Computer modeling has just reached the point where significant fundamental understanding can now be obtained
- Actual laser observation of combustion is yielding impressive results and confirmation of models
- Feedback control of diesel engines is emerging
- NOx and engine sensors are emerging
- Variable valve timing is untapped
- New materials are emerging
 - composites
 - MEMS

"Diesel engine technology is in its adolescence, at best."

Prof. Tony Oppenheim; UC, Berkeley; Member NAE; FIC

Advancements in Diesel Particulate Traps

Page 11

CORNING

Retrofitting Off-Road Diesel Equipment with DOC & DPF Significantly Reduced Emissions

DOC DPF -3 to 50% 80-95%

20% typ.

PM

NOx 0-17% 2-15% 12% typ.

Nescaum SAE 1999-01-0110

Emissions reductions from DPF and oxidation catalysts depend on the equipment

Page 12

The DECSE study showed that 20 ppm or lower sulfur is needed to hit 0.01 g/bhp-hr

Figure 3.2-4. PM composition as a function of fuel sulfur level, for road-load mode (with 95%

At 3 ppm sulfur, trap PM efficiency is 94%; at 30 ppm sulfur, 74%. At higher sulfur levels, PM goes up! Sulfates are the culprits.

The lines are theoretical relationships between sulfate production and fuel sulfur levels. To get less than 0.01 g/bhp-hr, less than 20 ppm sulfur is needed.

From DOE website; Diesel Emission Control - Sulfur Effects;

Page 15

Sponsored by DOE, EMA, MECA, and National Labs

CORNING

What about filter regeneration?

Page 16

CRT System is very effective, but requires low-S fuel and min. NOx/C

Fig. 17: Exhaust Gas Temperature and NO_X/Soot Ratio in Load-Speed Map of EURO 4 Engine with CRT System

AVL SAE 980190

HD DI / TCI Diesel Engine (1.5 I / cyl.)
EURO 4 Development with cooled EGR
1700 rpm / 100% load

500

South EGR
valves open,
valves open,
valves open,
valves open,
valves open only
by ag 200

NOX = 2.5 g/kWh
NOX/Soot = 30

NOX = 2.5 g/kWh
NOX/Soot = 30

1.5 g/kWh
NOX/Soot = 30

1.5 g/kWh
NOX/Soot = 3.9

1.5 g/kWh
NOX/Soot = 3.0

Fig. 18: Loading and Regeneration Behaviour of a CRT System

A minimum NOx/PM ratio of 8:1 was determined to be needed for CRT operation. It is generally available over most of the operating range.

Page 17

CORNING

Success DPF Regeneration of an IDI 2.5I engine was accomplished using cerium fuel additives and engine throttling to increase exhaust T

Periodic throttling of inlet air was used to regenerate a fully loaded DPF by increasing T. Cerium additions to fuel were 100 ppm

Figure 14. Trap Loading and Regeneration Events during Real Inner-City Vehicle Operation

Method was successfully used in real inner city driving

AVL, RHODIA, Renault SAE 982598

- Cerium dropped regeneration T from 560° to 300°C
- 50 ppm additions are described in recent literature

CORNING

Page 18

Other recently reported regeneration schemes

- · Active fuel management
 - Peugeot will post inject fuel and burn it in a DOC to generate heat; cerium catalyst added to fuel
- Microwave
 - need low mass filter, but some results on heating only soot

Page 20 CORNING

Europe is moving towards SCR: win/win/win (5% better fuel economy and clean air) •85% efficient SCR allows early injection. This Measured Data, 2 L/Cyl. Class Engines, w/o EGR 0.10 saves 5% on fuel consumption vs. cooled EGR options; pay back is 1 year in Europe and 6 years 0.08 in US Projected Values, Cooled EGR 0.06 •To hit 0.5 g/bhp-hr NOx and 0.01 g/bhp-hr PM (shown as shaded box), late injections would be 0.04 needed to balance filters, SCR and EGR, losing 0.02 the fuel savings. 0.00 Heavy Duty Engines EURO 4 Efficiency SCR 220 85% Efficiency SCR BSFC - g/kWh 210 100000 150000 200000 Medium Duty Engines ----USA 200 190 NOx - g/kWh Emissions / Fuel Consumption S CORNING

On the filter side, there are issues that are still being resolved, but much progress is being made

- Filter regeneration
 - passive or transparent
 - fuel minimized
 - catalyst enhanced
- Durability
 - related to regeneration and flow control
 - New filter configurations and HT materials being developed
- Back pressure
- Sulfur needs to be less than 20 ppm

Page 35

CORNING

NOx systems have come a long way and are close

- SCR will hit the targets
 - distribution
 - · solid urea could help
 - tampering
 - NOx sensors
 - · quick on-the-road diagnostics
 - ammonia slip is addressed with oxidation catalysts
- NOx Traps are the silver bullet
 - sulfur needs to be very low (<10 ppm light duty, perhaps lower for heavy duty)
 - or sulfur traps need to be developed
 - regeneration and desulphation schemes are in the works

CORNING

Page 36